Macro-3D: A Physical Design Methodology for Face-to-Face-Stacked Heterogeneous 3D ICs

Lennart Bamberg, Alberto García-Ortiz
ITEM, University of Bremen
{bamberg, agarcia}@uni-bremen.de

Lingjun Zhu, Sai Pentapati, Da Eun Shim, Sung Kyu Lim
GTCad, Georgia Institute of Technology
{lingjun, sai.pentapati, daeun, limsk}@ece.gatech.edu

Abstract—Memory-on-logic and sensor-on-logic face-to-face stacking are emerging design approaches that promise a significant increase in the performance of modern systems-on-chip at reasonable costs. In this work, a netlist-to-layout design flow for such heterogeneous 3D systems is proposed. The proposed technique overcomes the severe limitations of existing 3D physical design methodologies. A RISC-V-based multi-core system, implemented in a commercial technology, is used as a case study to evaluate the proposed design flow. The case study is performed for modern/large and small cache sizes to show the superiority of the proposed methodology for a broad set of systems. While previous 3D design flows do not show to optimize performance against 2D baseline designs for processor systems with a significant memory area occupation, the proposed flow shows a performance and power improvement by 20.4–28.2 % and 3.2–3.8 %, respectively.

I. INTRODUCTION

Integration into the third dimension enables scaling beyond the end of Moore’s law. Three main variants of 3D integrated circuits (ICs) exist: Through-silicon-via (TSV) based, monolithic, and face-to-face stacked [1]. The relatively large geometrical dimensions of today’s TSVs and their low manufacturing yield limit TSV-based 3D stacking to designs with a small number of inter-die connections [2]. Monolithic 3D integration is an emerging alternative where the 3D system is fabricated sequentially, instead of stacking pre-fabricated 2D dies, which enables fine-grain 3D interconnects, overcoming problems caused by the TSV area occupation. However, the manufacturing yield and cost of monolithic 3D ICs are currently even worse than that of TSV-based 3D ICs. While sophisticated manufacturing techniques—developed over decades for 2D ICs—are used to form transistors and metal layers in stacked 3D ICs, new process steps are required for monolithic 3D integration. After producing the first tier of a monolithic 3D IC, only relatively low temperatures can be used to form subsequent tiers to prevent degradation of already manufactured metal layers [3].

The preferred approach until technology advances is face-to-face (F2F) stacking. A F2F stack is made up of two pre-fabricated 2D dies connected through the topmost metal layers of both dies using a face-to-face bonding technology. Since F2F bonding bumps are much smaller and easier to manufacture than TSVs, F2F stacking enables a high 3D interconnect density at a low cost [4].

Like all 3D-integration techniques, F2F stacking enables heterogeneous integration. While one die can be manufactured in an aggressively scaled technology node to integrate semicustom digital components made up of standard cells, the other die can be used to integrate specific types of full-custom components. This heterogeneity brings numerous advantages as the technology of the second die can be optimized solely for the needs of the full-custom components. A well-known example of heterogeneous integration is memory-on-logic stacking, where the second die is dedicated exclusively to memory blocks. Thereby, the memory is no longer constrained by being process compatible with logic as the two dies are fabricated separately. Another example is sensor-on-logic integration. In contrast to logic components, sensors, and other analog/mixed-signal components typically do not benefit from using ultimately scaled technology nodes. Thus, in a sensor-on-logic stack, the sensing die can be integrated into a larger technology node than the logic die. Hence, heterogeneous 3D integration promises significantly better power, performance, area, and cost than homogeneous 3D integration.

State-of-the-art physical design methodologies for homogeneous F2F-stacked 3D ICs are based on commercial 2D placement, routing, and sign-off tools to produce commercial quality 3D IC layouts [5], [6]. However, the design methodologies are not suited for heterogeneous memory-on-logic or sensor-on-logic 3D integration. To overcome this problem, this work presents a physical design methodology for this specific kind of F2F-stacked 3D ICs, named Macro-3D. The flow enables to build high-performance memory-on-logic and sensor-on-logic 3D ICs. Moreover, the proposed design methodology is the first one that uses commercial 2D electronic design automation (EDA) tools without extending them substantially to produce a valid 3D placement and routing. This fact significantly improves the layout quality for the proposed flow.

A case study on memory-on-logic stacking for a tape-out-proven RISC-V multi-core system shows the strong superiority of the proposed flow and the design style. While the previous 3D physical design methodologies do not allow to increase the performance against 2D baseline designs, the proposed flow shows a performance/timing improvement by up to 28.2 %.

II. MACRO-ON-LOGIC 3D INTEGRATION

In this section, a specific type of heterogeneous 3D integration is introduced: Macro-on-logic (MoL) F2F stacking. The floorplan, as well as the cross-view of a MoL 3D IC and a logically equivalent 2D IC are illustrated in Fig. 1. In an F2F-stacked IC, two pre-fabricated 2D dies are bonded in a face-to-face manner. Thereby the electrical connections between the dies are established through F2F bumps. With F2F stacking, the same substrate area is available for active circuit elements as in...
a traditional 2D system with a footprint that is $2 \times$ larger. Thus, without increasing the substrate integration density, the x and y size of a system can be reduced by a factor of $\sqrt{2}$ through F2F stacking. Hence, F2F stacking reduces the maximum half-perimeter wire length (HPWL) by almost 30 % and thus shows vast potential to improve the system performance and energy dissipation for aggressively scaled technologies, in which interconnects are a bottleneck. However, this requires a minimum F2F-bump pitch in the range of the wire spacing. One promising solution is hybrid wafer-to-wafer bonding, which enables direct metal-to-metal/dielectric-to-dielectric bonding between the back end of lines (BEOLs) of two fabricated wafers. With this technique, F2F-bump pitches below 1 μm are possible due to the precise wafer-level integration [1]. This enables drastic 3D integration gains due to reduced wire lengths for a wide range of products.

An additional driver for 3D integration is heterogeneous integration. In a 2D system-on-chip (SoC), every component needs to be integrated within the same substrate/technology, and only one global BEOL structure exists. Stacking two dies provides the design-flexibility to have two different substrates and BEOLs. For the integration of semi-custom digital components, constructed from standard cells, using the most aggressively scaled technology is advantageous, but it demands a large number of metal layers. However, for full-custom components (e.g., memories, analog-digital converters), it can be advantageous to use a different technology or a substrate with different physical characteristics. Furthermore, the routing of most full-custom components requires fewer metal layers, even if integrated into the same technology node, due to the more regular wiring, which has the potential to reduce manufacturing cost. Thus, adding the heterogeneity that semi-custom digital components made up of standard cells are only integrated into one of the dies has the potential to boost the gain of F2F stacking. Afterward, the second die can have a different BEOL and is used only to integrate full-custom components that appear in the EDA flow as regular macro blocks. This specific approach of heterogeneous integration is denoted as macro-on-logic (MoL) stacking throughout this work, as, in the resulting layout, standard-logic cells are only placed into the bottom die while the top one only includes macro blocks. The structure of an MoL stack is illustrated in Fig. 1(c)–(d). Note, that in the die where the standard cells are placed (logic die) macros can still be placed (an analysis of modern multi-core systems shows that even with relatively small cache sizes macros occupy more than 50 % of the area).

In an MoL stack, designers can change the technology for the design of the full-custom components in the macro die as long as the interface (e.g., power supply voltage) is compatible with the standard cells in the other die. However, such changes do not affect the physical design of digital systems, during which all blocks (i.e., macros and standard cells) are treated as black boxes. Thus, only a heterogeneity between the BEOLs of the two dies is considered in the following.

III. MOTIVATION & FUNDAMENTAL IDEA

Two physical design methodologies for F2F-stacked 3D ICs have been proposed1: Shrunken-2D (S2D) [5] and Compact-2D (C2D) [6]. Both are based on 2D EDA tools to overcome the lack of true commercial-grade 3D EDA tools. In S2D, all standard cells and interconnect dimensions are initially shrunk by 50 %. Floorplanned macros are replaced by placement blockages. At an (x,y) location of the full stack, where a macro is placed in one of the two dies, the 2D place-and-route (P&R) tool considers a blockage of 50 %. Where macros are placed in both dies, the tool considers a full blockage. This allows the complete design to fit into a 2D floorplan with a footprint of the target two-die design. Afterward, the shrunk cells are placed and routed in this so-called S2D Design—having the BEOL of one die—while taking care of the macro blockages. Thereby, the shrunk cells are placed and routed with the same HPWL and metal-layer utilization as the target F2F design. However, this requires equal BEOLs in both dies of the F2F stack. After 2D P&R, tier partitioning is performed to determine the (z)-location of the dies resized to their original size. Afterward, F2F-via planning decides the actual F2F-bump locations and the true inter-die routing based on the (x,y,z) placements.

Compact-2D overcomes the issue of S2D that shrinking cells and routing geometries is not possible for ultimately scaled technology nodes as it requires 2D P&R engines for a future technology node. Furthermore, post-tier-partitioning optimization is added. The core idea of C2D is to increase the floorplan footprint by a factor of $2 \times$ compared to the final F2F stack. For a good estimate of the wire parasitics of the target 3D design, despite the increased floorplan, the interconnect parasitics per unit length are reduced by a factor of $\sqrt{2} \times$. Again, partial and full blockages are added to take macros into

1Note that die-by-die routing methodologies are not suitable for the F2F-bump counts hybrid wafer-to-wafer bonding enables.
account. However, here, the blockage areas are increased by a factor of 2 \times to account for the increased floorplan footprint. After P&R and the standard cells in the increased floorplan is done, the cell locations are linearly mapped to the 3D design to obtain the \((x,y)\) locations of the cells in the 2F2 design. Afterward, tier partitioning is performed, followed by 2F2-via planning like in S2D. Finally, post-tier-partitioning optimization and incremental routing are done.

Although both flows have shown promising results, they have significant drawbacks. At first, shrinking the interconnect dimensions or parasitics leads to inaccuracies in the estimated wire parasitics for the intermediate S2D/C2D Design. Many routes are included in the designs that do not exist in the final 2F2 design. Furthermore, the nature of the full, double metal stack, including the F2F bumps, is not considered. If interconnected cells are located next to each other in the C2D/S2D Design, but in different dies in the final 2F2 design, the parasitics change drastically due to the large interconnects parasitics in modern technologies. Generally, the whole initial P&R of the 2D tools does not represent reality. Therefore, timing can be heavily mispredicted, resulting in many paths being over-optimized (e.g., too large buffers) or under-optimized (e.g., too small buffers). This also requires a new routing after tier partitioning, degrading the performance compared to the S2D/C2D Design, as this second routing cannot be fully co-optimized with the placement. Furthermore, existing tools do not optimize for different BEOLs in the dies.

For macros in the design, the situation becomes worse as 50% blockages lead to large errors in the predicted \((x,y)\) cell locations compared to the final 2F2 design. Our experiments with the tools showed that the spatial resolution used by commercial 2D P&R tools to take care of partial blockages is not fine enough, resulting in many overlaps after tier partitioning. Fixing these overlaps again showed huge performance degradations. Also, the macro routing parasitics are estimated rather poorly. For example, for MoL integration, during the S2D or C2D stage, the P&R tool considers the macro pins as located within the same BEOL as the standard cell pins. However, in the final 3D design, the macro pins will be located in the other die, which increases the parasitics due to added vias and wires. Furthermore, this results in routing congestions that are not predictable at earlier stages. In fact, our experiments show that neither S2D nor C2D for a homogeneous or heterogeneous 3D integration scheme can improve the maximum performance of modern multi-cache-level processor systems compared to baseline 2D designs due to the large area occupation of macro cells (see later Sec. V). This is contrary to homogeneous designs mainly made up of standard cells where both flows, S2D and C2D, showed good performance improvements over 2D designs [5], [6].

To overcome the previously outlined issues, this work proposes to exploit the specific structure of an MoL stack such that nothing is modified (e.g., shrunk) that still has to be placed or routed, and no partial blockages are used while still only standard 2D EDA tools are required for P&R and power-performance-area (PPA) analysis. Furthermore, the 2D EDA tools will be given a combined BEOL that represents the full metal stack of the two stacked dies, including the F2F vias. In other words, for the first time, the 2D EDA tools are tricked to seeing the physical reality for P&R despite only allowing for one substrate. Thereby, in contrast to all previous 3D flows, the P&R and PPA results of the 2D tools are directly equal to the final ones for the target 3D stack, and no further steps such as partitioning, F2F-via planning, or inter-die/incremental routing are required. Furthermore, the highly-optimized 2D routing engines take care of the F2F-via planning, which also enables routing paths starting and ending in the same die but still traversing the other die to avoid congestions. This increases routability compared to previous approaches.

IV. PROPOSED DESIGN METHODOLOGY

This section presents Macro-3D, a physical design methodology for commercial-quality MoL-stacked 3D ICs. The flow consists of four main steps, illustrated in Fig. 2. First, two separate 2D floorplans with the same footprint as the final 2F2 stack are generated: One for the pure macro die, and one for the logic die (which can include macros as well). Afterward, the macro blocks are placed in these floorplans.

Second, a memory-on-logic-projected 2D floorplan is generated from the perspective of the logic die. To obtain a 2D P&R result that remains valid for the final F2F design and considers the correct net parasitics, the BEOL of the full metal stack is generated in the form of tch files for parasitic extraction.
In this work, OpenPiton [7], a tape-out-proven multi-core system, is used as the benchmark architecture. It is highly configurable, as the core count, cache sizes, etc., can be defined arbitrarily. The OpenPiton system is shown in Fig. 3(a). A full system consists of at least one chip, made up of multiple tiles. Thus, a tile is an atomic piece out of which systems with arbitrary core counts can be constructed. Hence, the tile design is analyzed while ensuring a correct functionality when multiple tiles are instantiated to create large systems (more details in Sec. V-1). Thereby, the reported results are valid for systems with arbitrary core counts. The tile architecture is illustrated in Fig. 3(b). It consists of a 64-bit out-of-order (OoO) RISC-V Ariane core and three cache levels (L1–L3). The first two levels are private to the individual cores, while the third level cache is coherently shared among all cores. Three parallel on-chip networks (NoCs) are used as the scalable inter-tile communication architecture.

Two tile architectures with different cache sizes are analyzed: A tile with a modern/large cache system with 16 kB of L1 instruction and data cache, 128 kB of L2 cache, and 1 MB of L3 cache per tile; and a small-cache tile, including 8 kB of L1 instruction cache, 16 kB of L1 data cache, 16 kB of L2 cache, and 256 kB of L3 cache per tile. Gate-level syntheses show that, even for the small cache sizes, memory macros occupy more than 50% of the substrate area, showing the suitability of MoL stacking for a wide range of standard products.

1) Design Setup: In the tile designs, the inter-tile interconnects must be captured through constraints, because those paths start in one tile and end in another. Consider an exemplary NoC path starting in one tile instance and ending in the north adjacent tile instance. This path is represented in the tile design by a path starting at an NoC register and ending at a north output pin, combined with a path starting at a south input pin ending at another NoC register. Thus, both paths together have to finish in one clock cycle, and the north output pin and the associated south input pin locations have to be aligned such that the tile instances can be connected without additional routing. Thus, in the tile design, all pins are located in M_6, input and output pins of inter-tile paths are constrained with a half-cycle delay, and associated output-input pin pairs have the same x location at the north-south edges or the same y location at the east-west edges. This ensures timing closure for systems with arbitrary tile counts. After P&R of a design, full-chip static timing/power analysis is performed to obtain the PPA values. Thereby, the toggle ratio per clock cycle for inputs and registers is set to 0.2. The maximum achievable clock frequency for a design is here used as the performance metric.

2) Tool and Technology Setup: A commercial 28-nm, high-κ metal-gate, planar technology is used for the physical design performed with Cadence tools. Multiple process corners are considered while timing closure is done at the slowest corner, and power is reported at the typical corner. In the full/double BEOL of the whole F2F stack, the F2F bumps are included as vias. The minimum-pitch, size, and height of these F2F vias are chosen as 1 um, 0.5 um \times 0.5 um, and 0.17 um, respectively, based on [1] and the BEOL of the used 28-nm technology. According to extraction results for the typical corner, the mean resistance and capacitance of a F2F via/bump is 44 mΩ and 1.0 fF, respectively.
Floorplans with placed memory macros are created. For a fair comparison, the area ratio between the footprints of a 2D and the related 3D floorplan is $2\times$, so the same silicon area is available in 2D and 3D. The macro floorplans for the 2D and MoL designs are shown in Fig. 4. To reach the maximum performance, all 2D and 3D floorplans are highly optimized by considering the tile architecture and P&R results for multiple floorplan alternatives.

A. Analysis and Results

First, a max-performance comparison between the proposed 3D physical design flow, the state-of-the-art 3D physical design flows (S2D/C2D), and the standard 2D design flow is drawn. Therefore, P&R is executed for all designs with six metal layers (per die for 3D designs) to have the same metal capacities in all designs, ensuring a fair comparison. The results reveal that, for designs with a significant amount of macros, S2D performs significantly better than C2D. As expected, previous 3D physical design flows perform better for the small-cache system, due to the lower macro-over-standard-cell area ratio. Thus, only results for S2D and the small-cache architecture are reported here. As outlined in Sec. III, S2D and C2D perform better if the number of partial macro blockages is minimized. Thus, a second balanced floorplan (BF) is created for the S2D flow in which memory blocks overlap as much as possible (resulting in more full blockages). Thereby, best-case values are reported for the previous 3D design methodologies. In Table I, the resulting max-performance PPA and manufacturing-cost metrics are presented. Even in the best-case scenario (BF S2D), the previous 3D flows result in a 33.3% lower maximum clock frequency, f_{clk}, than the baseline 2D design, due to the limitations outlined in Sec. III. If the process advantages of MoL stacking are wanted, BF S2D cannot be used, and the performance degradation is as high as 41.8%. This dramatically lower max-performance does not even result in a significantly improved energy dissipation per instruction, quantified by E_{mean}. In contrast, the proposed Macro-3D flow results in a max-performance increase of 20.5%, against the 2D design, without increasing the energy consumption noticeably. Furthermore, this is obtained at lower manufacturing cost than previous 3D flows, not only due to the intrinsic advantages of MoL stacking but also due to the reduced number of F2F bumps (-45.5%) with the same die footprint area, $A_{\text{footprint}}$.

Due to the previously outlined performance degradation of existing 3D flows for macro-heavy designs, the following in-depth analysis and discussion are limited to comparing the Macro-3D designs with the related 2D designs. The layouts of the baseline 2D designs and the Macro-3D designs are shown in Fig. 5 and 6, respectively. In Table II, the values for the in-depth comparison are reported. The results show that the maximum frequency of the Macro-3D MoL design is even 28.2% higher than the 2D baseline design for the large-cache tile. The huge performance improvements of the proposed flow for both tile structures are due to the smaller footprints, resulting in lower wire lengths/parasitics and better clock-tree characteristics. This also has a huge impact on the wirelength of the critical path, especially for the small-cache system,
where the critical path starts at a flip-flop and ends at a memory block in 2D. Such critical paths do not occur for MoL stacking, where memory blocks can be placed above standard logic. The standard-cell areas, $A_{\text{logic-cells}}$, and total pin capacitances, $C_{\text{pin,total}}$, are slightly increased for the Macro-3D designs when compared to the 2D designs, due to the higher drive strengths of some cells required for the increased clock frequencies. Despite the increased performance, Macro-3D designs, on average, do not consume more energy per cycle. When the $M6-M6$ flows show power consumption reductions by 3.2% and 3.8% compared to the 2D designs, due to the higher drive strengths of some cells required for the increased clock frequencies. Despite the proposed technique directly performs a true/valid 3D placement and routing without additional steps or tools. To achieve this, the flow exploits the specific nature of memory or sensor-on-logic 3D stacking, making it exclusively usable for such systems. However, both design styles promise an improvement in the system performance and manufacturing cost, compared to other 3D design styles, as it allows to add technological heterogeneity between the two dies. In contrast, previous 3D design methodologies perform particularly poorly for memory/sensor-on-logic 3D integration. Thus, the proposed technique extends previous works in an ideal way. While the previous 3D design methodologies do not show to optimize performance against 2D baseline designs for a RISC-V processor system and memory-on-logic stacking, the proposed technique shows to improve performance by up to 28.2%, while it still facilitates manufacturing. The considered design style enables to design memory or sensor blocks of an SoC without the need to be process compatible with standard logic. Exploiting this feature to boost the 3D-integration gains further is left for future work.

VI. Conclusion

This work presented a novel physical design methodology for heterogeneous F2F-stacked 3D ICs. The proposed flow is completely based on commercial 2D EDA tools, which results in commercial-quality 3D IC layouts. While previous flows that are also based on 2D EDA tools initially perform a pseudo placement and routing of the standard cells, the proposed technique directly employs an ideal way. While the previous 3D design methodologies do not show to optimize performance against 2D baseline designs for a RISC-V processor system and memory-on-logic stacking, the proposed technique shows to improve performance by up to 28.2%, while it still facilitates manufacturing. The considered design style enables to design memory or sensor blocks of an SoC without the need to be process compatible with standard logic. Exploiting this feature to boost the 3D-integration gains further is left for future work.

Table II

<table>
<thead>
<tr>
<th></th>
<th>Small-Cache</th>
<th>2D</th>
<th>Large-Cache</th>
<th>Macro-3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{clk} [MHz]</td>
<td>390</td>
<td>470 (+20.5%)</td>
<td>328</td>
<td>421 (+28.2%)</td>
</tr>
<tr>
<td>E_{mean} [µW]</td>
<td>116.7</td>
<td>117.6 (+0.8%)</td>
<td>369.3</td>
<td>366.1 (-0.9%)</td>
</tr>
<tr>
<td>A_{mean} [(um)^2]</td>
<td>1.20</td>
<td>0.60 (-50.0%)</td>
<td>3.88</td>
<td>1.94 (+50.1%)</td>
</tr>
<tr>
<td>A_{signal} [(um)^2]</td>
<td>0.29</td>
<td>0.30 (+1.6%)</td>
<td>0.47</td>
<td>0.47 (+1.2%)</td>
</tr>
<tr>
<td>Total wirelength [m]</td>
<td>6.3</td>
<td>5.6 (-11.8%)</td>
<td>12.2</td>
<td>10.4 (-14.8%)</td>
</tr>
<tr>
<td>F2F bumps</td>
<td>0</td>
<td>4740</td>
<td>0</td>
<td>1215</td>
</tr>
<tr>
<td>C_{pin} [fF]</td>
<td>0.36</td>
<td>0.38 (+5.6%)</td>
<td>0.52</td>
<td>0.56 (+7.4%)</td>
</tr>
<tr>
<td>$C_{\text{处处长}}$ [fF]</td>
<td>0.89</td>
<td>0.83 (-7.2%)</td>
<td>1.61</td>
<td>1.44 (-10.2%)</td>
</tr>
<tr>
<td>Max. clk.-tree depth</td>
<td>13</td>
<td>14 (+7.7%)</td>
<td>20</td>
<td>16 (-20.0%)</td>
</tr>
<tr>
<td>Crit.-path wirelength [mm]</td>
<td>1.49</td>
<td>0.55 (-33.0%)</td>
<td>2.21</td>
<td>1.50 (-32.0%)</td>
</tr>
</tbody>
</table>

Table III

Impact of Removing Two Metal Layers of the Macro Die on the MAX-PERFORMANCE PPA and COST METRICS.

<table>
<thead>
<tr>
<th></th>
<th>Small-Cache</th>
<th>Macro-3D</th>
<th>Macro-3D</th>
<th>Large-Cache</th>
<th>Macro-3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{clk} [MHz]</td>
<td>470</td>
<td>462 (+1.8%)</td>
<td>421</td>
<td>423 (+0.5%)</td>
<td></td>
</tr>
<tr>
<td>E_{mean} [µW]</td>
<td>117.6</td>
<td>119.9 (+1.3%)</td>
<td>366.1</td>
<td>362.5 (-1.8%)</td>
<td></td>
</tr>
<tr>
<td>A_{mean} [(um)^2]</td>
<td>7.20</td>
<td>6.0 (+16.7%)</td>
<td>23.3</td>
<td>19.4 (-16.7%)</td>
<td></td>
</tr>
<tr>
<td>A_{signal} [(um)^2]</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>F2F bumps</td>
<td>4740</td>
<td>3866 (-18.4%)</td>
<td>1215</td>
<td>922 (-24.1%)</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

